Drawing down an Annuity

Lecture 5

Robb T. Koether
Hampden-Sydney College

Wed, Sep 5, 2018

(1) Drawing down an Annuity

(2) Example - Building up and Drawing Down

(3) Another Example

4 Assignment

Outline

(9) Drawing down an Annuity

(2) Example - Building up and Drawing Down

(3) Another Example

4 Assignment

Annuity Formula (Drawing Down)

- When k is greater than one, then the formula is a bit more complicated.

$$
M=P\left(\frac{r / k}{1-\left(1+\frac{r}{k}\right)^{-k t}}\right),
$$

- Replace r with r / k and replace t with $k t$.

Annuity Formula (Drawing Down)

- If the withdrawals are annual, then $k=1$ and the formula is

$$
M=P\left(\frac{r}{1-(1+r)^{-t}}\right)
$$

where M is the amount withdrawn per period, P is the amount in the annuity when the withdrawals begin, r is the annual interest rate, and t is the number of years..

- When k is greater than one, then the formula is a bit more complicated.

$$
M=P\left(\frac{r / k}{1-\left(1+\frac{r}{k}\right)^{-k t}}\right),
$$

- Replace r with r / k and replace t with $k t$.

Example

Example (Five Withdrawals)

- Suppose that a person has accumulated $\$ 10,000$ and that it is earning 10% interest per year.
- How much can he withdraw each year for 5 years?

Example

Example (Five Withdrawals)

The amount withdrawn is

$$
M=\frac{\operatorname{Pr}}{1-(1+r)^{-t}}
$$

Example

Example (Five Withdrawals)

The amount withdrawn is

$$
\begin{aligned}
M & =\frac{P r}{1-(1+r)^{-t}} \\
& =\frac{(10000)(.10)}{1-(1.10)^{-5}}
\end{aligned}
$$

Example

Example (Five Withdrawals)

The amount withdrawn is

$$
\begin{aligned}
M & =\frac{\operatorname{Pr}}{1-(1+r)^{-t}} \\
& =\frac{(10000)(.10)}{1-(1.10)^{-5}} \\
& =2637.97 .
\end{aligned}
$$

Example

Example (Three Withdrawals)

Year	Starting Balance	Interest	Total	Withdrawal	Ending Balance	
1	$10,000.00$	$1,000.00$	$11,000.00$	$2,637.97$	$8,362.03$	

Example

Example (Three Withdrawals)

Year	Starting Balance	Interest	Total	Withdrawal	Ending Balance	
1	$10,000.00$	$1,000.00$	$11,000.00$	$2,637.97$	$8,362.03$	
2	$8,362.03$	836.20	$9,198.23$	$2,637.97$	$6,560.26$	

Example

Example (Three Withdrawals)

Year	Starting Balance	Interest	Total	Withdrawal	Ending Balance	
1	$10,000.00$	$1,000.00$	$11,000.00$	$2,637.97$	$8,362.03$	
2	$8,362.03$	836.20	$9,198.23$	$2,637.97$	$6,560.26$	
3	$6,560.26$	656.03	$7,216.29$	$2,637.97$	$4,578.32$	

Example

Example (Three Withdrawals)

Year	Starting Balance	Interest	Total	Withdrawal	Ending Balance
1	$10,000.00$	$1,000.00$	$11,000.00$	$2,637.97$	$8,362.03$
2	$8,362.03$	836.20	$9,198.23$	$2,637.97$	$6,560.26$
3	$6,560.26$	656.03	$7,216.29$	$2,637.97$	$4,578.32$
4	$4,578.32$	457.83	$5,036.15$	$2,637.97$	$2,398.18$

Example

Example (Three Withdrawals)

Year	Starting Balance	Interest	Total	Withdrawal	Ending Balance
1	$10,000.00$	$1,000.00$	$11,000.00$	$2,637.97$	$8,362.03$
2	$8,362.03$	836.20	$9,198.23$	$2,637.97$	$6,560.26$
3	$6,560.26$	656.03	$7,216.29$	$2,637.97$	$4,578.32$
4	$4,578.32$	457.83	$5,036.15$	$2,637.97$	$2,398.18$
5	$2,398.18$	239.82	$2,638.00$	$2,637.97$	0.03

Example

Example (Five Withdrawals)

- How much interest was earned over the 5 years?

Example

Example (Five Withdrawals)

- How much interest was earned over the 5 years?

$$
\begin{aligned}
\text { Interest } & =5 \times 2,637.97-10,000 \\
& =13,189.85-10,000 \\
& =\$ 3,189.85
\end{aligned}
$$

Outline

(1) Drawing down an Annuity

(2) Example - Building up and Drawing Down

(3) Another Example

(4) Assignment

Example

Example (10-Year Example)

- Suppose we invest $\$ 200.00$ each month at 9% for 18 years for a college savings account.
- Then we withdraw from the account a fixed amount (to be determined) each year for the next 4 years (tuition payments).

Example

Example (Building up the Annuity)

The future value is of the annuity is

$$
F=\frac{P\left(\left(1+\frac{r}{12}\right)^{12 t}-1\right)}{r / 12}
$$

Example

Example (Building up the Annuity)

The future value is of the annuity is

$$
\begin{aligned}
F & =\frac{P\left(\left(1+\frac{r}{12}\right)^{12 t}-1\right)}{r / 12} \\
& =\frac{200\left((1.0075)^{216}-1\right)}{0.0075}
\end{aligned}
$$

Example

Example (Building up the Annuity)

The future value is of the annuity is

$$
\begin{aligned}
F & =\frac{P\left(\left(1+\frac{r}{12}\right)^{12 t}-1\right)}{r / 12} \\
& =\frac{200\left((1.0075)^{216}-1\right)}{0.0075} \\
& =\$ 107,270.33
\end{aligned}
$$

Example

Example (Drawing down the Annuity)

- Now we begin making withdrawals over the next 4 years.
- How much can we withdraw each year?

Example

Example (Drawing down the Annuity)

- Now we begin making withdrawals over the next 4 years.
- How much can we withdraw each year?

$$
M=\frac{P r}{1-(1+r)^{-t}}
$$

Example

Example (Drawing down the Annuity)

- Now we begin making withdrawals over the next 4 years.
- How much can we withdraw each year?

$$
\begin{aligned}
M & =\frac{P r}{1-(1+r)^{-t}} \\
& =\frac{(107,270.33)(0.09)}{1-(1.09)^{-4}}
\end{aligned}
$$

Example

Example (Drawing down the Annuity)

- Now we begin making withdrawals over the next 4 years.
- How much can we withdraw each year?

$$
\begin{aligned}
M & =\frac{P r}{1-(1+r)^{-t}} \\
& =\frac{(107,270.33)(0.09)}{1-(1.09)^{-4}} \\
& =\$ 33,100.99
\end{aligned}
$$

Example

Example (Drawing down the Annuity)

- What if the interest rate were 10% ?

Example

Example (Drawing down the Annuity)

- What if the interest rate were 10% ? ans: $\$ 37,892.03$

Example

Example (Drawing down the Annuity)

- What if the interest rate were 10% ? ans: $\$ 37,892.03$
- What if the interest rate were 12% ?

Example

Example (Drawing down the Annuity)

- What if the interest rate were 10% ? ans: $\$ 37,892.03$
- What if the interest rate were 12% ? ans: $\$ 49,902.76$

Outline

(1) Drawing down an Annuity

(2) Example - Building up and Drawing Down

(3) Another Example

4) Assignment

Another Example

Example

- That same person says, "But I think I'll need \$75,000 each year for tuition and l'm afraid that I will earn only 6% on the average."
- How much should the person invest each month?

Example

Example (Drawing down the Annuity)

- We have to work the problem "backwards."
- What must be the value of the annuity in order to withdraw $\$ 50,000$ each year for 4 years?

Example

Example (Drawing down the Annuity)

- We have to work the problem "backwards."
- What must be the value of the annuity in order to withdraw $\$ 50,000$ each year for 4 years?

$$
M=\frac{P r}{1-(1+r)^{-t}}
$$

Example

Example (Drawing down the Annuity)

- We have to work the problem "backwards."
- What must be the value of the annuity in order to withdraw $\$ 50,000$ each year for 4 years?

$$
\begin{aligned}
M & =\frac{P r}{1-(1+r)^{-t}} \\
75000 & =\frac{P(0.06)}{1-(1.06)^{-4}}
\end{aligned}
$$

Example

Example (Drawing down the Annuity)

- We have to work the problem "backwards."
- What must be the value of the annuity in order to withdraw $\$ 50,000$ each year for 4 years?

$$
\begin{aligned}
M & =\frac{P r}{1-(1+r)^{-t}} \\
75000 & =\frac{P(0.06)}{1-(1.06)^{-4}} \\
& =P(0.28859149)
\end{aligned}
$$

Example

Example (Drawing down the Annuity)

- We have to work the problem "backwards."
- What must be the value of the annuity in order to withdraw $\$ 50,000$ each year for 4 years?

$$
\begin{aligned}
M & =\frac{P r}{1-(1+r)^{-t}} \\
75000 & =\frac{P(0.06)}{1-(1.06)^{-4}} \\
& =P(0.28859149) \\
P & =\frac{75,000}{0.28859149}
\end{aligned}
$$

Example

Example (Drawing down the Annuity)

- We have to work the problem "backwards."
- What must be the value of the annuity in order to withdraw $\$ 50,000$ each year for 4 years?

$$
\begin{aligned}
M & =\frac{P r}{1-(1+r)^{-t}} \\
75000 & =\frac{P(0.06)}{1-(1.06)^{-4}} \\
& =P(0.28859149) \\
P & =\frac{75,000}{0.28859149} \\
& =\$ 259,882.92
\end{aligned}
$$

Example

Example (Building up the Annuity)

- Now how much must be invested each month at 6% interest in order to have $\$ 259,882.92$ after 18 years?

Example

Example (Building up the Annuity)

- Now how much must be invested each month at 6\% interest in order to have $\$ 259,882.92$ after 18 years?

$$
F=\frac{P\left(\left(1+\frac{r}{12}\right)^{12 t}-1\right)}{r / 12}
$$

Example

Example (Building up the Annuity)

- Now how much must be invested each month at 6% interest in order to have $\$ 259,882.92$ after 18 years?

$$
\begin{aligned}
F & =\frac{P\left(\left(1+\frac{r}{12}\right)^{12 t}-1\right)}{r / 12} \\
259,882.92 & =\frac{P\left(1.005^{216}-1\right)}{0.005}
\end{aligned}
$$

Example

Example (Building up the Annuity)

- Now how much must be invested each month at 6% interest in order to have $\$ 259,882.92$ after 18 years?

$$
\begin{aligned}
F & =\frac{P\left(\left(1+\frac{r}{12}\right)^{12 t}-1\right)}{r / 12} \\
259,882.92 & =\frac{P\left(1.005^{216}-1\right)}{0.005} \\
& =P(387.35319)
\end{aligned}
$$

Example

Example (Building up the Annuity)

- Now how much must be invested each month at 6% interest in order to have $\$ 259,882.92$ after 18 years?

$$
\begin{aligned}
F & =\frac{P\left(\left(1+\frac{r}{12}\right)^{12 t}-1\right)}{r / 12} \\
259,882.92 & =\frac{P\left(1.005^{216}-1\right)}{0.005} \\
& =P(387.35319) \\
P & =\frac{259,882.92}{387.35319}
\end{aligned}
$$

Example

Example (Building up the Annuity)

- Now how much must be invested each month at 6% interest in order to have $\$ 259,882.92$ after 18 years?

$$
\begin{aligned}
F & =\frac{P\left(\left(1+\frac{r}{12}\right)^{12 t}-1\right)}{r / 12} \\
259,882.92 & =\frac{P\left(1.005^{216}-1\right)}{0.005} \\
& =P(387.35319) \\
P & =\frac{259,882.92}{387.35319} \\
& =\$ 670.92
\end{aligned}
$$

Outline

(1) Drawing down an Annuity

(2) Example - Building up and Drawing Down

(3) Another Example

4 Assignment

Assignment

Assignment

- Annuity worksheet: 6-10.

